ON THE RELATIVE PERIODIC MOTIONS OF A PENDULUM

(OB OTNOSITEL'NYKH PERIODICHESKIKH
DVIZHENIIAKH MAIATNIKA)

PMM Vol.28, N: 1, 1964, pp.1060-163

N.V. STOIANOV
(Sofila, Bulgaria)

(Received October 12, 1903)

Conuidered are the properties of the relative periodic motions of a rigid
body suspended on an elastic string in a uniformly rotating vertical plane.
The relative periodic motions of a mathematical pendulum with an elastic
string were considered in [1] and [2].

1. Let us denote by Oxy a system of coordinates rotating uniformly
with respect to the downward gy-axis, relative to which the motion of the
ripid body will be studiea. The elastic string, considered as a linear mas:-
less spring with an elastic constant ¢ , iv attached at a polnt 0, (Seg
Fig.1l) where 00,= hA. The angle of deflection of the string from the verti-
cal axis 0,y, will be denoted by «, anu I1tv icngth by p . A body with a
mass m 1s suspenued from the spring at point ¢, . The angle between the
straight line passing through 0, and the center of gravity (¢ of the body
and the vertical will be denoted as @, , and let us assume 0,0 = a .
Choosing a body system of coordinates (gn{ , such that Cn passes through
0, » CE 1s orthogonal to (n and lying in the plane 0Oxy , while 0¢¢ 1is
orthogonal to Oxy

We assume that the axes of the system Cgng
are the principal axes of inertia of the body.
The principal moments of inertia with respect
to the axes (€ , (n and C{ will be denoted
by J»(v=1,2,3), respectively.

The kinetic energy of the system in 1ts abso-
lute motion. according to the Koenlg theorem,
is

= Vamzr 242 [J39% + @ (Jy sin® gy -i- J; c0s? @y)]
where v, is the abrolin volocivy of point (.
In view ol' the fact that the coorainates of the
center of gravity of the body relative to the
oxy system are defined by Expressions

z,=hJ psing, +a sint @y,

Y, == p COS Py = 4 COS Py

and that

N ‘2 ‘2 2, 2
l(: =T -l_ yc + ® xc
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the expresclon for the kinetic energy becomes
T =y m [p? + p2gy® -+ agy? + 2ap'y sin (91 — o) + 20pQs Ga c0S (P1— @) +
+ 0% (4 psin @ + a singg?] + /s Wy@e? -+ @ (Jy sin® @, + J3 c0s* @y)] (1.1)
The putential energy of the system 1.e. the sum of the energy of elastic
deformation of the :.tring and the gravitational energy, is given by the

Exprooodion
IH=1¢{p— N?— mg(pcosg, + acosp,) (1.2)

where [ i the free length of the string.

Bearing in mind {(1.1) and (1.2) we obtain, according to the Lagrange
cguaLivne, the system of differential equations of motion
p” o (B — % — w?sin®@p) -+ a@y” sin (@ — @) — 4@y cos (@1 — Py) —

— @% (b asingy) sing; — geosgy — A2l =10
PPL F 20°Qy - a gy €08 Py — Pa) 1 @@y sin Py — @) — @* (k o psing; +
4 asingy) cosg; + gsing, = 0 {1.3)

Lhoy" 4 (p@” -+ 2p'@y) cos (@ — @) — (P — pgy ) sin (@ — @a) —
— 02 (h + psing; -+ a sin@y) cos @y -+ [(J2— J1)/2 am]sin 2¢, |- g singg =

where
1 > .13 €«
I i 2
h « (a + m} v K m
Here 1, 1s the derived length of the physical pendulum {body) relative

to the point 0, .
Let us consider the oscillatlons of the system near the position of rela-

tive equilibrium. Let us assume
Jy=J, (1.9

It can be proved that if {1.4) is valid, then for the state of relative
equilibrium the angles «,, and ¢, are equal to each other and, consequent-

ly, the fcllowing substlitution can be made:
Pl =b-+E(0, @) =@+, @ () =g +¥ ()

que and ae, @nd r 1s the length
The gquantitlies ¢, and 3

(1.5)

Here g, 1s the value of the angles
of' the pendulum string in relative equilibrium.

are determined by the egualities
Bo— ) =nt-+ bsing, + asinpy) sin@, + gc0sQ, (1.6)

gsing, =w? (h -+ bsingg - a sin@y) cos g,
Bearing in mind (1.4%) and (1.6), by the substitution of (1,5) into (1.3),

we obtain
"+ (B — @?singg) § — 1/,0% sin 2Qy¢ — Vy0fa sin2@ep = f + . . . 1.7

b F ap” — 0l cosP@f + (K2 (b — 1) — 0% cos? Pl — wacostep =y + ...
Lp" + be" — 1,07 sin 2qf — 0% cos g ¥+ [A2 (b — 1) — wPacosPalp = fy ...

where
fr= 92— a(p—P)p" 4+ ©%sin 20,8 -+ @a cos? o — yola sin? @e? - ap? -
+ Y, (2% cos 2@ — aw? sin® @y — 0Ph sin @y — g oS Py) ¢
fo=—2L8p " —2Eq -+ o cos 2k p —/zw’a sin 2o — 3/s0% sin 2q@up? — Hawle sin 2qop?

fa==—E8" — (@ —P)E"— 287 ¢ + 0 cos® gl — 1/30% sin 2@ —
— ? sin® @& — '/, % sin 2Qe@* — 2/40* sin 2qe}? (1.8)
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Neglecting the nonlinear terms we obtain the yotoem

E" - apé + ap® + app =0
bo" + ap” + by + b - by =0 (1.9
LY+ 09"+ en 4 e + ey = 0

where
a;; = k! — o? sin® g, by = — wla cos® q,, ¢ = — L/s0? sin 2¢,
2 = — 1/30% sin 2q,, by = &2 (b — 1) — 0% cos? g,, ¢ = — 0% cos? g,
1y == — 1/3w%a sin 2, by3 = — 0%a c0s> @y, ¢z = k(b — 1) — wla cos? @,
(1.10)
The fundamental cquation of tne system will Lo
ay + r* ot} 13
by byg -+ br2 by ar? | =0 (1.11)
‘n CigH b g+ 4yr?

The condition that Equation (1.11) would have purely imaginary root: Lo
reduced to the inequality

k? [g.cos @y + w? (hsingy - Isin? @g — b cos® gy — a cos 2¢q,)] +
-+ 0% cos? g sin @, (sin Qg — a cospg) > 0 (1.12)

Under condition (1.12) the system has three pair: of purcly imaginary
roots. On the basls of the general theory of linear equation: with constant
coefficients, the system (1.7) can be transformed into a form similar to the
system [3] (p.435) ax @y

CU:~ry—}—X, EZMJT_Y

dz,
27 = bat + oAbz, e by 4 X (s=1,...,m; m=4)

where t {ir ls any pair ct purely imaginary roots.

The propused syctem may be consldered as a Liapunov cyctem relative to
such a palr of purely imgglnary rcots. On the baci.. of the thevrem [ 3]
(p.442), 1t may be asserted that the system permlits a perlodic colution
dependent on an arbitirary parameter. Thic parameter 1 the initial valuc 7
of the quantity .

The "basic" pal: ol purly Imaginary roots can be any pair and therdfor::
this system permit. thrcee periloaic solutions.

2, Now lct uv utudy the propertiec of perlodlc motlionn near the ponltlon
of relative equllibrium which have an approximate pcrlod Pr/m

Let the perlod of the solutlion be of the form
2n ,
T1:r_-1'(1+61k”1‘ 62}\12 -+ ) (2.1)

where &,. 6,,... are constants subjcet to detcrminatlon and  a = ay

We introduce the variable 1 in place of the varlable ¢ into the cqua-
tions by meanc of the substitution

t=1(l+ &A+ 8A2 4 ... 2.2)

Then the problem is reduced to finding the periodic woolullons with the
period 7, of the system
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E b ayt +appvtapp=/f*+...

be” 4 ap” b by kb b= f* 4 ... 23)
LY 00" + el e+ o = f55 -+ ...
where , JoF and f* are obtained from (1.8). The derivatives here and

in the follow1nb are with respect to 7

The solutions of the syctem (2.3) are analytic with respect to x , and
thercefore they will be sought in the form of the series

E (1) =A%, (0) + A3 (1) 4+ M5 (1) & .
Q) = A (V) - Mgy () + Mg () 4. .. (2.4)
P (1) = Mpy (1) + A, (1) -+ APy (1) 4. ..

where  Eur @u B, (v =1,2,3) are periodic functions of r of the period

2n/r, (here «, and ¢, are periodic functions of «+ and have not the same

meaning as in Section 1) satisfying the initial conditions 2.5)
D

LO=1 O =k VO =k &0 =9 0=9%0=0 (=123

Substituting (2.4) into (2.3) and equating the coefficients of like powers
(()f A wWe c))btain a system of equations for determination of §v, @, and o,
v o= 1,2,3

For the functlons &, ¢; and §,; there results a basic system (1.9} which
has the obvious solution’
£y (v) = cos nr, @ (1) = kycos ryt, Py (V) = kzcos.yt (2.6}
where
(an — r®) (b1g — ary®) — aystn ko = (a1 — %) (byg — bry?) — aygeny
ayg (byy — br?) — ayy (b3 — ar®) * 17 ay; (bia — Ory?) — agq by — ary?)

ky =

Furthermore, we have
Ea" F apls - a®s + aygpy = Fo — 28,F; cos 1T < Fyc0s 2nT
b+ aty” - by A bya@y + by = G — 28,6, cos ryT 4 Gy €08 2ryT 2.7)
L 4 by -+ eyl s €10y b oy = Ho — 28,Hy cos ryv -+ Hy cos 2ryv

where the expressions for Fys Gy and H, are not derived because of thelr
complexity.

The periodic solution {with the period 21'r/r1 ) of the homogeneous system
corresponding to (2.7) will be
Eoy = C, cos 1yt 4 Dysin nyw, Qg1 = Ky (C; cos 17 + D; sin 1)
Pgy = ky (Cy €05 1T ~+ Dy sin r1) (2.8)

where the unknown constants (¢ and D, will be determined later.
The particular solution of the system (2.7) 1s sought in the form

&ag = Pg + P cos ;v - Py cos 2T, Qag == Qg - Q€08 rv 4 Qg €08 21T
Py == Ry -+ Ry c0s Tt + Hgcos 2nT 2.9)

Subi.tituting {2.9) into {2.7) we obtain for F,s @, 8nd R {v = 0,1,2)
the systemc
ayPo + 213Q0 + a3Re = Fy
b1Py + b13Qe + bisBy = Go (2.10)
euPy + c1aQo - c1sRo = Hy
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(a1 — r?) Py + a13Qy + aysRy = — 28,F,
by Py + (byy — bry?) Qy + (byy — ar® Ry = — 28,G, (2.11)
enPy + (g — b} Qy + (o5 — Lr®) Ry = — 28,H,
(ay — 4r?) Py + a13Q5 + ay3Ra= Fy
by Py ~F (byy — 4bry?) Qa + (b3 — 4ar?) Ry = Gy (2.12)

enPa ¥ (613 — 4br®) Q3 + (era— 4lyr®) Ry = H,

Thus, the problem is reduced to the determination of conditions for which
thece systems can be solved with respect to P\), QV and }?V

Since O and + 2ir, are not the rovots of Equationsz (1.11), the sy:utem
(2.10) and (2.12) have a unique solutlon for Py, §o, Fo and i, Qo, Ka
respectively.,

The characteristic equation of the uetermilnant for the system (2.11) co-
ineides cxactly with Equation (1.11) for which r = t ir, 15 a root. It 1..
obvious now that for &, = O the system (2.11) has a solution Q, = ky Py anu
R, == kyP;. Thus,

Ey = Py <+ Py cos 1T+ D, sin nv + Py cos 2rt
P2 = Q¢ -+ Q' cos ryv 4 kD, sin rt + Q4 cos 2mt (2.13)
.l y, = Ro -+ Ry’ cos 1T + kD, sin ryt + Ry cos 2rt
wre
Py =P, + Cy, Q' = Q1+ kG, Ry = R, + kC,
From condition (2.5) 1t follows directly that D,= 0 , therefore we can
write
Ea = Py + Py cos ryt -+ Py cos 2T, P2 = Qg -+ Q) cos 1T+ Qycos 2ryT
Py = Ry + Ry’ cos r,T + R, cos 2rT (2.14)
The constants p,, ¢, and #,” as well as 6, are determined from the

periodicity conditidn of the function: ¢,, «, and §, which are notl acriveu
becausc of thelr bulkines:o.

It 1s Interestlly, ve note that the coefficients of the »  terms in (2.4)
represent particular colutions of the corresponding systems.

The periodlic solutions of the system (1.7) are expresced. approximately ac
E = Acos T -+ A2 (Py + Py cos 1T+ Pycos 2rt) + ...
@ = My c0s 1T A2 (Q + Qy cos mh + Qpcos2ryT) + . .. (2.15)
P = Ak €0s 1T -+ A2 (Rg -+ Ry c0s 1T + Ry cos 2ry7) ¥ . ..
and the period of the motion is

2n
Ty=" (480 + .. )

The tension force & in the string of the pendulum 1: of the form

K=c(p—1
or, taking into account (2.15)
K =c[b— 1+ Acos ryv + A2 (Py + P,/ cos 1T + Py cos 2r7) + . . ]

Similarly, it can be established that periodle solutlions alio correepond
to the roots + i{r, and = ir,
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