ON THE RELATIVE PERIODIC MOIIONS OF A PENDULUM

(OB OINOSITEL'NYKH PERIODICHESKIKH
 DVIZHENIIAKH MAIATNIKA)

PMM Vol.28, N: 1, 1964, pp.160-103
N.V. STOIANOV
(Sofia, Bulgaria)
(Received Oetober 12, 1903)

Considered are the properties of the relative periodic motions of a rigid body suspended on an elastic string in a uniformly rotating vertical plant. The relative periodic motions of a mathematical pendulum with an elastic :tring were considered in [1] and [2].

1. Let us denote by $0 x y$ a system of coordinates rotating uniformly with respect to the downward oy-axis, relative to which the motion of the rigid body will be studied. The elastic string, considered as a linear ma: ilees spring with an elastic constant c, iu attached at a point O_{1} (See Fig.1) where $\delta O_{1}=h$. The angle of deflection of the strine from the vertical axis $0_{1} \mu_{1}$ will be denoted by r_{1} anu ifi icneth by p. A body with a mass m is suspenued from the spring at point 0_{2}. The angle between the straight line passing through O_{2} and the center of gravity C of the body and the vertical will be denoted as φ_{2}, and let us assume $O_{2} C=a$. Choosing a body system of coordinates $C \bar{\Pi} \Pi$, such that $C \eta$ passes through $O_{2}, C \zeta$ is orthogonal to $C \eta$ and lying in the plane $O x y$, while $C \zeta$ 1s orthogonal to oxy.

We assume that the axes of the system $0 \varepsilon \eta \delta$ are the principal axes of inertia of the body. The principal moments of inertia with respect to the axes $C \xi, C \eta$ and $C S$ will be denoted by $J_{v}(v=1,2,3)$, respectively.

The kinetic energy of the system in its absulute motion. according to the Koenig theorem, is

$$
T=1 / 2 m c_{r}^{2}+1 / 2\left|J_{3} \varphi_{2}^{2}+\omega^{2}\left(J_{1} \sin ^{2} \varphi_{2}+J_{2} \cos ^{2} \varphi_{2}\right)\right|
$$

where v is the abroll, whocicy of point C. In view "fl the fact that the coordinates of the center of gravity of the body relative to the $0 x y$ system are defined by Expressions

$$
\begin{gathered}
x_{c}=h+\rho \sin \varphi_{1}+a \sin \varphi_{2} \\
y_{c}=\rho \cos \varphi_{1}=a \cos \varphi_{2}
\end{gathered}
$$

and that

$$
\tau_{c}^{2}=x_{r}^{2}+y_{c}^{2}+\omega^{2} x_{c}^{2}
$$

the erpresslon for the kinetic energy becomes

$$
\begin{gather*}
T=1 / 2 m\left[\rho^{2}+\rho^{2} \varphi_{1}^{2}+a \varphi_{2}^{2}+2 a \rho \varphi_{2} \sin \left(\varphi_{1}-\varphi_{2}\right)+2 a \rho \varphi_{1} \varphi_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)+\right. \\
\left.+\omega^{2}\left(h+\rho \sin \varphi_{1}+a \sin \varphi_{2}\right)^{2}\right]+1 / 2\left[J_{3} \varphi_{2}^{2}+\omega^{2}\left(J_{1} \sin ^{2} \varphi_{2}+J_{2} \cos ^{2} \varphi_{2}\right)\right] \tag{1.1}
\end{gather*}
$$

The putential energy of the system i.e. the sum of the energy of elastic deformation of the itrime and the gravitational energy, is given by the Expmain

$$
\begin{equation*}
\Pi=1 / 2 c(\rho-l)^{2}-m g\left(\rho \cos \varphi_{1}+a \cos \varphi_{2}\right) \tag{1.2}
\end{equation*}
$$

where i is the free length of the string.
Beariff in mind (1.1) and (1.2) we obtain, according to the Lagrange quationt , the system of differential equations of motion

$$
\rho^{*}+\rho\left(k^{2}-\varphi_{1}^{2}-\omega^{2} \sin ^{2} \varphi_{1}\right)+a \varphi_{2}^{*} \sin \left(\varphi_{1}-\varphi_{2}\right)-a \varphi_{2}{ }^{* 2} \cos \left(\varphi_{1}-\varphi_{2}\right)-
$$

$$
-\omega^{2}\left(h+a \sin \varphi_{2}\right) \sin \varphi_{1}-g \cos \varphi_{1}-k^{2} l=0
$$

$$
\rho \varphi_{1}^{\prime \cdot}+2 \rho^{\prime} \varphi_{1}^{\cdot}+a \varphi_{2}^{\prime} \cos \left(\varphi_{1}-\varphi_{2}\right)+a \varphi_{2} \sin \left(\varphi_{1}-\varphi_{2}\right)-\omega^{2}\left(h+\rho \sin \varphi_{1}+\right.
$$

$$
\begin{equation*}
\left.+a \sin \varphi_{2}\right) \cos \varphi_{1}+g \sin \varphi_{1}=0 \tag{1.3}
\end{equation*}
$$

$l_{1} \varphi_{2}{ }^{*}+\left(\rho \varphi_{1}{ }^{*}+2 \rho \varphi_{1}\right) \cos \left(\varphi_{1}-\varphi_{2}\right)-\left(\rho^{*}-\rho \varphi_{1}{ }^{2}\right) \sin \left(\varphi_{1}-\varphi_{2}\right)-$
$-\omega^{2}\left(h+\rho \sin \varphi_{1}+a \sin \varphi_{2}\right) \cos \varphi_{2}+\left[\left(J_{2}-J_{1}\right) / 2 a m \mid \sin 2 \varphi_{2}+g \sin \varphi_{2}=0\right.$
where

$$
l_{1}=\frac{1}{a}\left(a^{2}+\frac{J_{3}}{m}\right), \quad k^{2}=\frac{c}{m}
$$

Here 12 is the derived length of the physical pendulum (body) relative to the puint O_{2}.

Let us consider the oscillations of the system near the position of relative equilibrium. Let us assume

$$
\begin{equation*}
J_{1}=J_{2} \tag{1.4}
\end{equation*}
$$

It can be proved that if (1.4) is valid, then for the state of relative equilibrium the angles p_{10} and φ_{∞} are equal to each other and, consequently, the following substitution can be made:

$$
\begin{equation*}
p(t) \therefore b+\xi(t), \quad \varphi_{1}(t)=\varphi_{0}+\varphi(t), \quad \varphi_{2}(t)=\varphi_{0}+\psi(t) \tag{1.5}
\end{equation*}
$$

Here mo is the value of the angles m_{10} and q_{20}, and k is the length of the pendulum string in relative equilibrium. The quantities fo and b are determined by the equalities

$$
\begin{gather*}
k^{2}(b-l)=\omega^{2}\left(h+b \sin \varphi_{0}+a \sin \varphi_{0}\right) \sin \varphi_{0}+g \cos \varphi_{0} \tag{1.6}\\
g \sin \varphi_{0}=\omega^{2}\left(h+b \sin \varphi_{0}+a \sin \varphi_{0}\right) \cos \varphi_{0}
\end{gather*}
$$

Bearins in mind (1.4) and (1.6), by the substitution of (1.5) into (1.3), we obtain

$$
\begin{equation*}
\xi^{\prime \prime}+\left(k^{2}-\omega^{2} \sin \varphi_{0}\right) \xi-1 / \omega^{2} \omega^{2} b \sin 2 \varphi_{0} \varphi-1 / 2 \omega^{2} a \sin 2 \varphi_{\psi} \psi=f_{1}+\ldots \tag{1.7}
\end{equation*}
$$

$b \varphi^{*}+a \varphi^{\prime \prime}-\omega^{2} a \cos ^{2} \varphi_{0} \xi+\left[k^{2}(b-l)-\omega^{2} b \cos ^{2} \varphi_{0} I \varphi-\omega^{2} a \cos ^{2} \varphi_{0} \psi=\dot{f}_{2}+\ldots\right.$
$l_{1} \psi^{\prime \prime}+b \varphi^{\prime \prime}-1 / 2 \omega^{2} \sin 2 \varphi_{0} \xi-\omega^{2} b \cos ^{2} \varphi_{0} \varphi+\left[k^{2}(b-l)-\omega^{2} a \cos ^{2} \varphi_{0}\right] \psi=f_{3}+\ldots$ where

$$
\begin{gather*}
f_{1}=b \varphi^{2}-a(\varphi-\psi) \psi^{\prime \prime}+\omega^{2} \sin 2 \varphi_{0} \xi \varphi+\omega^{2} a \cos ^{2} \varphi_{0} \varphi \psi-1 / 2 \omega^{2} a \sin ^{2} \varphi_{0} \psi^{2}+a \varphi^{2}+ \\
+1 / 2\left(2 \omega^{2} b \cos 2 \varphi_{0}-a \omega^{2} \sin ^{2} \varphi_{0}-\omega^{2} h \sin \varphi_{0}-g \cos \varphi_{0}\right) \varphi^{2} \\
f_{2}=-\xi \varphi^{\circ}-2 \xi \varphi+\omega^{2} \cos 2 \varphi_{0} \xi \varphi-1 / \omega^{2} a \sin 2 \varphi_{0} \varphi \varphi-3 / 4 \omega^{2} b \sin 2 \varphi_{0} \varphi^{2}-1 / 2 \omega^{2} a \sin 2 \varphi_{0} \psi^{2} \\
f_{3}=-\xi \varphi^{\prime \prime}-(\varphi-\psi) \xi-2 \xi \varphi^{\circ}+\omega^{2} \cos ^{2} \varphi_{0} \xi \varphi-1 / 2 \omega^{2} b \sin 2 \varphi_{0} \varphi \psi- \\
-\omega^{2} \sin ^{2} \varphi_{0} \xi \psi-1 / 4 \omega^{2} b \sin 2 \varphi_{0} \varphi^{2}-3 / 4 \omega^{2} \sin 2 \varphi_{0} \psi^{2} \tag{1.8}
\end{gather*}
$$

Neglecting the nonlinear terms we obtain the eyntum

$$
\begin{array}{r}
\xi^{*}+a_{11} \xi+a_{12} \varphi+a_{13} \psi=0 \\
b \varphi+\varphi^{\prime \prime}+a^{\prime *}+b_{11} \xi+b_{12} \varphi+b_{13} \psi=0 \tag{1.9}\\
l_{1} \psi^{*}+b \varphi^{*}+c_{11} \xi+c_{12} \varphi+c_{13} \psi=0
\end{array}
$$

where

$$
\begin{gather*}
a_{11}=k^{2}-\omega^{2} \sin ^{2} \varphi_{0}, \quad b_{11}=-\omega^{2} a \cos ^{2} \varphi_{0}, \quad c_{11}--1 / 2 \omega^{2} \sin 2 \varphi_{0} \\
{ }^{2}=-1 / 2 \omega^{2} b \sin 2 \varphi_{0}, \quad b_{12}=k^{2}(b-l)-\omega^{2} b \cos ^{2} \varphi_{0}, \quad c_{12}=-\omega^{2} b \cos ^{2} \varphi_{0} \\
a_{13}=-1 / 2 \omega^{2} a \sin 2 \varphi_{0}, \quad b_{13} \cdots-\omega^{2} a \cos ^{2} \varphi_{0}, \quad c_{13}=h^{2}(b-l)-\omega^{2} a \cos ^{2} \varphi_{0} \tag{1.10}
\end{gather*}
$$

The fundamental equation of the system will be

$$
\left|\begin{array}{ccc}
a_{11}+r^{2} & a_{12} & a_{13} \tag{1.11}\\
b_{11} & b_{12}+b r^{2} & b_{13}+a r^{2} \\
c_{11} & c_{12}+b r^{2} & c_{13}+l_{1} r^{2}
\end{array}\right|=0
$$

The condition that Equation (1.11) would have purely inarsinary foul: l:: reduced to the inequality

$$
\begin{align*}
k^{2}\left[g \cdot \cos \varphi_{0}\right. & \left.+\omega^{2}\left(h \sin \varphi_{0}+l \sin ^{2} \varphi_{0}-b \cos ^{2} \varphi_{0}-a \cos 2 \varphi_{0}\right)\right]+ \\
& +\omega^{4} b \cos ^{2} \varphi_{0} \sin \varphi_{0}\left(\sin \varphi_{0}-a \cos \varphi_{0}\right)>0 \tag{1.12}
\end{align*}
$$

Under condition (1.12) the system has three pair: of purcly imatinary roots. On the basis of the general theory of linear equations with contant coefficients, the system (1.7) can be transformed into a form similar to th. system [3] (p.435)

$$
\frac{d x}{d t}=-r y+X, \quad \frac{d y}{d t}=r x+Y
$$

$$
\frac{d x_{s}}{d t}=b_{81} x_{1}+\ldots+b_{s m^{2}} x_{i n}+a_{s} x+b_{s} y+X_{s} \quad(s=1, \ldots, m ; m=4)
$$

where \pm ir is any pair of purely imaginary rooto.
The propused :yytem may be considered as a Liapunov :yyiem relative tu such a pair of purety imacinary roots. On the baci.. of the theurem [3] ($p .442$), it may be aseerted that the yystem permit: a perivicicolution dependent on an arbitrary parameter. This parameter i: the initial value z of the quantity r.

The "basic" paii w fur ly imaginary roote can be any fair and there fore this system permile: thace perivale solutione.
2. Now ict ue utudy the properties of periodic notione near the poritiun of relative equilibrium which have an approximate poriori z / r_{1}.

Let the periou of the sulution be of the form

$$
\begin{equation*}
T_{1}=\frac{2 \pi}{r_{0}}\left(1+\delta_{1} \lambda \div \delta_{2} \lambda^{2}+\ldots\right) \tag{2.1}
\end{equation*}
$$

where $\delta_{1}, \delta_{2}, \ldots$ are constants subivet to detcomination and $\alpha=a y$.
We introduce the variable T in place or the variable + ini the cquations by means of the substitution

$$
\begin{equation*}
t=\tau\left(1+\delta_{1} \lambda+\delta_{2} \lambda^{2}+\ldots\right) \tag{2.2}
\end{equation*}
$$

Then the problem is reduced to finding the puriodic : Luilons with the period z_{1} of the syitem

$$
\begin{gather*}
\xi \cdot \cdots+a_{11} \xi+a_{12} \varphi+a_{13} \psi=f_{1}^{*}+\cdots \\
b \varphi^{*}+a \psi{ }^{*}+b_{11} \xi+b_{12} \varphi+b_{13} \psi=f_{2}{ }^{*}+\cdots \tag{2.3}\\
l_{1} \psi^{\prime \prime}+b \varphi^{*}+c_{11} \xi+c_{12} \varphi+c_{13} \psi=f_{3}{ }^{*}+\ldots
\end{gather*}
$$

whore $f_{1}^{*}, f^{*}{ }^{*}$ and f_{s}^{*} are obtained from (1.8). The derivatives here and in the folluwing are with respect to τ.

The colutions of the system (2.3) are analytic with respect to λ, and therefore they will be sought in the form of the series

$$
\begin{align*}
& \xi(\tau)=\lambda \xi_{1}(\tau)+\lambda^{2} \xi_{2}(\tau)+\lambda^{3} \xi_{3}(\tau) \& \ldots \\
& \varphi(\tau)=\lambda \varphi_{1}(\tau)+\lambda^{2} \varphi_{2}(\tau)+\lambda^{3} \varphi_{3}(\tau)+\ldots \tag{2.4}\\
& \Psi(\tau)=\lambda \psi_{1}(\tau)+\lambda^{2} \psi_{2}(\tau)+\lambda^{3} \psi_{3}(\tau) \notin \ldots
\end{align*}
$$

Where $\xi_{v}, \varphi_{\nu}, \psi_{\nu}(v=1,2,3)$ are periodic functions of τ of the period $2 \pi / r_{1}$ (here r_{1} and ψ_{2} are periodic functions of T and have not the same meaning as in Section 1) satisfying the initial conditions
$\xi_{1}(0)=1, \quad \varphi_{1}(0)=k_{1}, \quad \Psi_{1}(0)=k_{2}, \quad \xi_{v} \cdot(0)=\varphi_{v} \cdot(0)=\varphi_{v} \cdot(0)=0 \quad(v=1,2,3)$
Substituting (2.4) into (2.3) and equating the coefflcients of like powers of λ we obtain a system of equations for determination of ξ_{v}, φ_{v} and ψ_{v} $(v=1,2,3)$.

For the functions ξ_{1}, φ_{1} and ψ_{1} there results a basic system (1.9) which has the obvious solution

$$
\begin{equation*}
\xi_{1}(\tau)=\cos r_{1} \tau, \quad \varphi_{1}(\tau)=k_{1} \cos r_{1} \tau, \quad \psi_{1}(\tau)=k_{2} \cos r_{1} \tau \tag{2.6}
\end{equation*}
$$

where

$$
k_{1}=\frac{\left(a_{11}-\dot{r}_{1}^{2}\right)\left(b_{13}-a r_{1}^{2}\right)-a_{13} c_{11}}{a_{13}\left(b_{12}-b r_{1}^{2}\right)-a_{12}\left(b_{13}-a r_{1}^{2}\right)}, \quad k_{2}=\frac{\left(a_{11}-r_{1}^{2}\right)\left(b_{12}-b r_{1}^{2}\right)-a_{12} c_{11}}{a_{13}\left(b_{12}-b r_{1}^{2}\right)-a_{12}\left(b_{13}-a r_{1}^{2}\right)}
$$

Furthermore, we have

$$
\begin{gather*}
\xi_{2}{ }^{*}+a_{11} \xi_{2}+a_{12} \varphi_{2}+a_{13} \psi_{2}=F_{0}-2 \delta_{1} F_{1} \cos r_{1} \tau+F_{2} \cos 2 r_{1} \tau \\
l \varphi_{2}{ }^{*}+a \psi_{2}{ }^{*}+b_{11} \xi_{2}+b_{12} \varphi_{2}+b_{13} \psi_{2}=C_{0}-2 \delta_{1} G_{1} \cos r_{1} \tau+G_{2} \cos 2 r_{1} \tau \tag{2.7}\\
l_{1} \psi_{2} \cdot+b \varphi_{2}{ }^{*}+c_{11} \xi_{2}+c_{12} \varphi_{2}+c_{13} \psi_{2}=H_{0}-2 \delta_{1} H_{1} \cos r_{1} \tau+H_{2} \cos 2 r_{1} \tau
\end{gather*}
$$

where the expressions for F_{v}, G_{ν} and H_{v} are not derived because of their complexity.

The periodic solution (with the period $2 \pi / r_{1}$) of the homogeneous system corresponding to (2.7) will be

$$
\begin{gather*}
\xi_{21}=C_{1} \cos r_{1} \tau+D_{1} \sin r_{1} \tau, \quad \varphi_{21}=k_{1}\left(C_{1} \cos r_{1} \tau+D_{1} \sin r_{1} \tau\right) \\
\psi_{21}=k_{2}\left(C_{1} \cos r_{1} \tau+D_{1} \sin r_{1} \tau\right) \tag{2.8}
\end{gather*}
$$

where the unknown constants C_{1} and D_{1} will be determined later.
The particular solution of the system (2.7) is sought in the form

$$
\begin{gather*}
\xi_{22}=: P_{0}+P_{1} \cos r_{1} \tau+P_{2} \cos 2 r_{1} \tau, \quad \varphi_{22}=Q_{0}+Q_{1} \cos r_{1} \tau+Q_{2} \cos 2 r_{1} \tau \\
\psi_{22}=R_{1}+R_{1} \cos r_{1} \tau+R_{2} \cos 2 r_{1} \tau \tag{2.9}
\end{gather*}
$$

Subitituting (2.9) into (2.7) we obtain for F_{v}, Q_{v} and $A_{v}(\nu=0,1,2)$ the system

$$
\begin{align*}
& a_{11} P_{0}+a_{12} Q_{0}+a_{13} R_{0}=F_{0} \\
& b_{11} P_{0}+b_{12} Q_{0}+b_{13} R_{0}=G_{0} \tag{2.10}\\
& c_{11} P_{0}+c_{12} Q_{0}+c_{13} R_{0}=H_{0}
\end{align*}
$$

$$
\begin{gather*}
\left(a_{11}-r_{1}^{2}\right) P_{1}+a_{12} Q_{1}+a_{13} R_{1}=-2 \delta_{1} F_{1} \\
b_{11} P_{1}+\left(b_{12}-b r_{1}^{2}\right) Q_{1}+\left(b_{13}-a r_{1}^{2}\right) R_{1}=-2 \delta_{1} G_{1} \tag{2.11}\\
c_{11} P_{1}+\left(c_{12}-b r_{1}^{2}\right) Q_{1}+\left(c_{13}-l_{1} r_{1}^{2}\right) R_{1}=-2 \delta_{1} H_{1} \\
\left(a_{11}-4 r_{1}^{2}\right) P_{1}+a_{12} Q_{2}+a_{13} R_{2}=F_{2} \\
b_{11} P_{2} \downarrow\left(b_{12}-4 b r_{1}^{2}\right) Q_{2}+\left(b_{13}-4 a r_{1}^{2}\right) R_{2}=G_{2} \tag{2.12}\\
c_{11} P_{2}+\left(c_{12}-4 b r_{1}^{2}\right) Q_{2}+\left(c_{13}-4 l_{1} r_{1}^{2}\right) R_{2}=H_{2}
\end{gather*}
$$

Thus, the problem is reduced to the determination of cunditions for which these systems can be solved with respect to F_{v}, Q_{v} and R_{v}.

Since 0 and $\pm 2 i r_{1}$ are not the ruots of Equations (1.11), the system. (2.10) and (2.12) have a unique solution for P_{0}, Q_{0}, F_{0} and $F_{2}, Q_{2}, H_{\text {: }}$, retipectively.

The characteristic equation of the veterminant for the system (2.11) coincides uxactly with Equation (1.11) for which $r= \pm$ ir is a root. It i.. ubvious now that for $\delta_{1}=0$ the system (2.11) has a solution $Q_{1}=k_{1} P_{1}$ and $\boldsymbol{R}_{1}=k_{2} P_{1}$. Thus,

$$
\begin{gather*}
\xi_{2}=P_{0}+P_{1}^{\prime} \cos r_{1} \tau+D_{1} \sin r_{1} \tau+P_{2} \cos 2 r_{1} \tau \\
\varphi_{2}=Q_{0}+Q_{1}^{\prime} \cos r_{1} \tau+k_{1} D_{1} \sin r_{1} \tau+Q_{2} \cos 2 r_{1} \tau \tag{2.13}\\
\psi_{2}=R_{0}+R_{1}^{\prime} \cos r_{1} \tau+k_{2} D_{1} \sin r_{1} \tau+R_{2} \cos 2 r_{1} \tau
\end{gather*}
$$

where

$$
P_{1}^{\prime}=P_{1}+C_{1}, \quad Q_{1}^{\prime}=Q_{1}+k_{1} C_{1}, \quad R_{1}^{\prime}=R_{1}+k_{2} C_{1}
$$

From condition (2.5) it follows directly that $D_{1}=0$, therefore we can write

$$
\begin{gather*}
\xi_{2}=P_{0}+P_{1}^{\prime} \cos r_{1} \tau+P_{2} \cos 2 r_{1} \tau, \quad \varphi_{2}=Q_{0}+Q_{1}^{\prime} \cos r_{1} \tau+Q_{2} \cos 2 r_{1} \tau \\
\psi_{2}=R_{0}+R_{1}^{\prime} \cos r_{1} \tau+R_{2} \cos 2 r_{1} \tau \tag{2.14}
\end{gather*}
$$

The constants $P_{1}^{\prime}, Q_{1}^{\prime}$ and H_{1}^{\prime} as well as δ_{2} are determined from the
 because of their bulkinese.

It is interéwim, Lu note that the coefficients of the λ term. in (2.4) represent particular sulutions of the corresponding systems.

The periudic solutions of the system (1.7) art expressed approximately as

$$
\begin{gather*}
\xi=\lambda \cos r_{1} \tau+\lambda^{2}\left(P_{0}+P_{1}^{\prime} \cos r_{1} \tau+P_{2} \cos 2 r_{1} \tau\right)+\ldots \\
\varphi=\lambda k_{1} \cos r_{1} \tau+\lambda^{2}\left(Q_{0}+Q_{1}{ }^{\prime} \cos r_{1} \lambda+Q_{2} \cos 2 r_{1} \tau\right)+\ldots \tag{2.15}\\
\psi=\lambda k_{2} \cos r_{1} \tau+\lambda^{2}\left(R_{0}+R_{1}^{\prime} \cos r_{1} \tau+R_{2} \cos 2 r_{1} \tau\right)+\ldots
\end{gather*}
$$

and the period of the motion is

$$
T_{1}=\frac{2 \pi}{r_{1}}\left(1+\delta_{2} \lambda^{2}+\ldots\right)
$$

The tension force K in the string of the pendulum i. of the form

$$
K=c(\rho-l)
$$

or, taking into account (2.15)

$$
K=c\left[b-l+\lambda \cos r_{1} \tau+\lambda^{2}\left(P_{0}+P_{1}^{\prime} \cos r_{1} \tau+P_{2} \cos 2 r_{1} \tau\right)+\ldots\right]
$$

Similarly, it can be established that periodic solutions al:n curserpond to the roots $\pm i r_{a}$ and $\pm i r_{s}$

BIBLIOGRAPHY

l. Bradistilov, G. and Boiadzhiev, G., Periodichni i asimptotichni dvizhenifa na posledovatelno sv"rzani matematichni makhala s elastichni nishki (Periodic and asymptotic motions of sequentially connected mathematic pendulums with elastic strings). God.na MEI, Vol.10, Book l, 1961.
2. Pisarev, A.M., Relativni periodichni dvizheniia na matematichno elastichno makhalo v ravnomerno v'rtiashcha se vertikalna ravnina (Relative periodic motions of a mathematic elastic pendulum in a uniformly rotating vertical plane). God.na MEI, Vol.10, Book 1, 1961.
3. Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Some problems of the theory of nonlinear oscillations). Gostekhizdat, 1956.

Translated by V.C.

